Packing and doubling in metric spaces with curvature bounded above

نویسندگان

چکیده

We study locally compact, geodesically complete, CAT $$(\kappa )$$ spaces ( $$\hbox {GCBA}^\kappa $$ -spaces). prove a Croke-type local volume estimate only depending on the dimension of these spaces. show that doubling condition, with respect to natural measure, implies pure-dimensionality. Then we consider -spaces satisfying uniform packing condition at some fixed scale $$r_0$$ or arbitrarily small scale, and several compactness results pointed Gromov–Hausdorff convergence. Finally, as particular case, convergence stability $$M^\kappa -complexes bounded geometry.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The local structure of length spaces with curvature bounded above

We show that a number of different notions of dimension coincide for length spaces with curvature bounded above. We then apply this result, showing that if X is a locally compact CAT (0) space with cocompact isometry group, then the dimension of the Tits boundary and the asymptotic cone(s) of X are determined by the maximal dimension of a flat in X .

متن کامل

Low-interference networks in metric spaces of bounded doubling dimension

Let S be a set of n points in a metric space, let R = {Rp : p ∈ S} be a set of positive real numbers, and let GR be the undirected graph with vertex set S in which {p, q} is an edge if and only if |pq| ≤ min(Rp, Rq). The interference of a point q of S is defined to be the number of points p ∈ S \ {q} with |pq| ≤ Rp. For the case when S is a subset of the Euclidean space R, Halldórsson and Tokuy...

متن کامل

Metric measure spaces with Riemannian Ricci curvature bounded from below

In this paper we introduce a synthetic notion of Riemannian Ricci bounds from below for metric measure spaces (X, d,m) which is stable under measured Gromov-Hausdorff convergence and rules out Finsler geometries. It can be given in terms of an enforcement of the Lott, Sturm and Villani geodesic convexity condition for the entropy coupled with the linearity of the heat flow. Besides stability, i...

متن کامل

Kirszbraun’s Theorem and Metric Spaces of Bounded Curvature

We generalize Kirszbraun’s extension theorem for Lipschitz maps between (subsets of) euclidean spaces to metric spaces with upper or lower curvature bounds in the sense of A.D. Alexandrov. As a byproduct we develop new tools in the theory of tangent cones of these spaces and obtain new characterization results which may be of independent interest.

متن کامل

Euclidean spaces as weak tangents of infinitesimally Hilbertian metric spaces with Ricci curvature bounded below

We show that in any infinitesimally Hilbertian CD∗(K,N)-space at almost every point there exists a Euclidean weak tangent, i.e. there exists a sequence of dilations of the space that converges to a Euclidean space in the pointed measured Gromov-Hausdorff topology. The proof follows by considering iterated tangents and the splitting theorem for infinitesimally Hilbertian CD∗(0, N)-spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2021

ISSN: ['1432-1823', '0025-5874']

DOI: https://doi.org/10.1007/s00209-021-02905-5